Iterative methods

Some definitions:
A is irreducible if there is no permutation P such that $\mathrm{P}^{\mathrm{T}} \mathrm{AP}=\left[\begin{array}{cc}\mathrm{A}_{1,1} & \mathrm{~A}_{1,2} \\ 0 & \mathrm{~A}_{2,2}\end{array}\right]$
A is non-negative (denoted as $\mathrm{A} \geq 0$) if $\mathrm{a}_{\mathrm{i}, \mathrm{j}} \geq 0$, for all $1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n}$
A is an M-matrix if A is nonsingular, $a_{i, j} \leq 0$ for $i \neq j$, and $A^{-1} \geq 0$
A is irreducibly diagonally dominant if A is irreducible,
diagonally dominant with $\left|a_{i, i}\right|>\sum_{j=1, j \neq i}^{n} a_{i, j}$ for some i.
$A=M-N$ is a regular splitting of A if M is nonsingular and $M^{-1} \geq 0$

Lemma 1: if $\|M\|<1$ then $I-M$ is nonsingular

$$
\text { and }\left\|(I-M)^{-1}\right\| \leq \frac{1}{1-\|M\|}
$$

Proof:Sketch of proof

1. $(I-M)^{-1}=I+M+M^{2}+\ldots$

$$
\text { consider } S_{n}=\sum_{k=0}^{n} M^{k} \quad \text { for } m>n
$$

$$
\left\|S_{n}-S_{m}\right\| \leq \sum_{k=n+1}^{m}\left\|M^{k}\right\| \leq\left\|M^{n+1}\right\| \cdot \frac{1-\|M\|^{m-n}}{1-\|M\|} \rightarrow 0 \text {, as } m, n \rightarrow \infty
$$

$$
\Rightarrow S_{n} \rightarrow S
$$

2. $I+M \cdot S_{n}=S_{n+1} \Rightarrow \lim _{n \rightarrow \infty} I+M \cdot S_{n}=\lim _{n \rightarrow \infty} S_{n+1}$
$\Rightarrow I+M S=S \quad \Rightarrow I=(I-M) \cdot S$
$\Rightarrow S=(I-M)^{-1} \Rightarrow I-M$ is nonsin gular.
3. $\left\|(I-M)^{-1}\right\| \leq \sum_{k=1}^{\infty}\|M\|^{k}=\frac{1}{1-\|M\|}$

Simple iterations:

$$
\begin{aligned}
& x^{k+1}=M x^{k}+c \Rightarrow x^{k} \rightarrow x \text { when }\|M\|<1 \\
& \text { proof : consider }\left\{\begin{array}{c}
x^{k+1}=M x^{k}+c \\
x=M x+c
\end{array} \Rightarrow \Delta x^{k+1}=M \Delta x^{k}\right. \\
& \quad \Rightarrow\left\|\Delta x^{k+1}\right\|=\left\|(M)^{k} \Delta x_{0}\right\| \leq\|M\|^{k}\left\|\Delta x_{0}\right\| \rightarrow 0 \text { as } k \rightarrow \infty
\end{aligned}
$$

Richardson iteration

$$
x^{k+1}=x^{k}+\frac{1}{\alpha}\left(b-A x^{k}\right) \Rightarrow x^{k+1}=\left(I-\frac{1}{\alpha} A\right) x^{k}+\frac{b}{\alpha} .
$$

The iteration converges when $\left\|I-\frac{1}{\alpha} A\right\|<1$

Suppose A is diagnalizable, $Q^{T} A Q=\left[\begin{array}{lll}\lambda_{1} & & 0 \\ & \ddots & \\ 0 & & \lambda_{n}\end{array}\right]$. Clearly when
$0 \leq \alpha \leq \frac{\max _{i} \lambda_{i}}{2}$, we have $\left\|I-\frac{1}{\alpha} A\right\|<1$.

How many iterations needs to ensure error $<\varepsilon$?
let $\alpha=\|\rho(A)\|=\max _{i} \lambda_{i} \Rightarrow\left\|I-\frac{1}{\alpha} A\right\|=\left|1-\frac{\lambda_{\text {min }}}{\lambda_{\text {max }}}\right|=\left|1-\frac{1}{\operatorname{Cond}(A)}\right|$
$\left(1-\frac{1}{\operatorname{Cond}(A)}\right)^{k}<\varepsilon \Rightarrow k>\frac{\ln \varepsilon}{\ln \left(1-\frac{1}{\operatorname{Cond}(A)}\right)} \approx \mathrm{O}((\ln \varepsilon) \operatorname{Cond}(A))$

Stationary Iterative Methods

$$
\begin{array}{lll}
\text { 1. } \mathrm{r}^{\text {old }}=f-A u^{\text {old }} & e^{\text {new }} & =e^{\text {old }}-B^{-1}\left(f-A u^{\text {old }}\right) \\
\text { 2. Solve } \mathrm{e}=\mathrm{B}^{-1} r^{\text {old }} \\
\text { 3. update } \mathrm{u}^{\text {eew }}=u^{\text {old }}+e
\end{array} \quad \Leftrightarrow \quad \begin{array}{ll}
\text { old }-B^{-1} A\left(u-u^{\text {old }}\right) \\
& =\left(I-B^{-1} A\right) e^{\text {old }}
\end{array}
$$

B is called an iterator or preconditioner of A.
$E_{B}=I-B^{-1} A$ is called the error reduction operator of the iterator B

Perron-Frobenius Theorem

Theorem: Let $A \geq 0$ be an irreducible matrix. Then

1. A has a positive real eigenvalue equal to its spetral radius
2. There is an eigenvector $\mathrm{x}>0$ corresponds to $\rho(A)$
3. $\rho(A)$ increases when any entry of A increases.
4. $\rho(A)$ is a simple eigenvalue of A .

Lemma 2 Let A and B be two matrices with $0 \leq|\mathrm{B}| \leq A$. Then $\rho(\mathrm{B}) \leq \rho(\mathrm{A})$

Some Well Known Iterative Methods

Suppose $A=D-L-U$, where
D is the diagonal, L and U are lower and upper triangular parts, respectively.

Richardson: $\quad B=\frac{1}{\omega}$, where $0<\omega<\frac{2}{\rho(\mathrm{~A})}$.
Jacobi: $\quad B=D$
Damped Jacobi: $B=\frac{1}{\omega} D$, where $0<\omega<\frac{2}{\rho\left(\mathrm{D}^{-1} \mathrm{~A}\right)}$.
Gauss-Seidel: $\quad B=(D-L)$
SOR:

$$
B=\frac{1}{\omega}(D-\omega L), \text { where } 0<\omega<2 .
$$

Matrix Splitting:
A matrix $A=M-N$ is a regular splitting if M is nonsingular with $M^{-1} \geq 0$ and $N \geq 0$.

Theorem 1: Let $A=M-N$ be a regular splitting then A is non-singular with $A^{-1} \geq 0$

$$
\text { iff } \rho\left(M^{-1} N\right)<1 \text { where } \rho\left(M^{-1} N\right)=\frac{\rho\left(A^{-1} N\right)}{1+\rho\left(A^{-1} N\right)}
$$

proof: consider $M^{-1} A=I-M^{-1} N \quad$ where $M^{-1} \geq 0, N \geq 0$

$$
\Rightarrow M^{-1} N \geq 0
$$

(1) Clearly, if $\rho\left(M^{-1} N\right)<1$, then

$$
A=\underbrace{M}_{\text {nonsingular }} \underbrace{\left(I-M^{-1} N\right)}_{\text {nonsingular }} \text { is nonsingular }
$$

(2) $A^{-1}=\left(I-M^{-1} N\right)^{-1} M^{-1}$

Since $\rho\left(M^{-1} N\right)<1, I-M^{-1} N$ is nonsingular (by Lemma 1) moreover $\left(I-M^{-1} N\right)^{-1}=I+\left(M^{-1} N\right)+\left(M^{-1} N\right)^{2}+\ldots . . \geq 0$, because $M^{-1} N \geq 0$. Clearly, $A^{-1} \geq 0$

Stationary iterations, $A=M-N$ be a regular splitting
$(*) x^{k+1}=x^{k}+M^{-1} r^{k} \quad$ where $r^{k}=b-A x^{k}$
$\Rightarrow e^{\text {New }}=\left(I-M^{-1} A\right)=\left(M^{-1} N\right) e^{o l d}$

Corollary:

1. If A is nonsingular and $A^{-1} \geq 0$ then $(*)$ converges.
\square
2. If a matrix A is an M-matrix, then $(*)$ converges. U
3. If A is irreduciblely diagonally dominant with $a_{i j} \leq 0, i \neq j$, and $a_{i i}>0$, for all i. then A is an M-matrix.

Jacobi and Gauss-Seidel

Jacobi:

$$
x_{i}^{(m+1)}=-\sum_{\substack{j=1 \\ j \neq i}}^{n}\left(\frac{a_{i, j}}{a_{i, i}}\right) x_{j}^{(m)}+\frac{r_{i}}{a_{i, i}}
$$

Gauss-Seidel: $\quad x_{i}^{(m+1)}=-\sum_{j=1}^{i-1}\left(\frac{a_{i, j}}{a_{i, i}}\right) x_{j}^{(m+1)}-\sum_{j=i+1}^{n}\left(\frac{a_{i, j}}{a_{i, i}}\right) x_{j}^{(m)}+\frac{r_{i}}{a_{i, i}}$

HW1: Write down a formula for SOR
HW2:
Write a program to solve $\left[\begin{array}{cccc}1 & 0 & -\frac{1}{4} & -\frac{1}{4} \\ 0 & 1 & -\frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{4} & -\frac{1}{4} & 1 & 0 \\ -\frac{1}{4} & -\frac{1}{4} & 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=0.5\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$ by
Jacobi and Gauss-Seidel, starting with initial $\mathbf{x}^{(0)}=[0,0,0,0]$.

Let $\mathrm{E}_{\mathrm{J}}=\left(I-D^{-1} A\right)$ and $\mathrm{E}_{\mathrm{GS}}=\left(I-(D-L)^{-1} A\right)$. Since the solution of HW2 is $\mathrm{x}=[1,1,1,1]$ and $\mathrm{e}^{0}=x-x^{(0)}=[1,1,1,1]$. Clearly, we have $\mathrm{e}_{\mathrm{J}}^{\mathrm{m}}=\left(\mathrm{E}_{\mathrm{J}}\right)^{\mathrm{m}} \mathrm{e}^{0}$ and $\mathrm{e}_{G S}^{\mathrm{m}}=\left(\mathrm{E}_{\mathrm{GS}}\right)^{\mathrm{m}} \mathrm{e}^{0}$,
One can easily check that
$e_{J}^{\mathrm{m}}=\frac{-1}{2^{m}}\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$ and $\mathrm{e}_{\mathrm{GS}}^{\mathrm{m}}=\frac{-1}{4^{m}}\left[\begin{array}{l}2 \\ 2 \\ 1 \\ 1\end{array}\right]$. Thus, $\left\|e_{\mathrm{J}}^{\mathrm{m}}\right\|=\frac{1}{2^{m-1}}>\left\|e_{\mathrm{GS}}^{\mathrm{m}}\right\|=\frac{\sqrt{10}}{4^{m}}$.
You might get a feeling that Gauss-Seidel method is faster than Jacobi method.

Stein-Rosenberg Theorem

Theorem: Let $\mathrm{B}_{\mathrm{J}}=L+U$ be the Jacobi matrix and $\mathrm{B}_{\mathrm{CS}}=(I-L)^{-1} U$ be the GaussSeidel matrix. Then one and only one of the following relations is vaild:

1) $\rho\left(\mathrm{B}_{\mathrm{J}}\right)=\rho\left(\mathrm{B}_{\mathrm{GS}}\right)=0$.
2) $0<\rho\left(\mathrm{B}_{\mathrm{GS}}\right)<\rho\left(\mathrm{B}_{\mathrm{J}}\right)<1$.
3) $\rho\left(\mathrm{B}_{\mathrm{J}}\right)=\rho\left(\mathrm{B}_{\mathrm{GS}}\right)=1$.
4) $1<\rho\left(\mathrm{B}_{\mathrm{J}}\right)<\rho\left(\mathrm{B}_{\mathrm{GS}}\right)$.

Convergence of Jacobi, Gauss-Seidel and SOR Iterative Methods

Lemma 1. If $\mathrm{A}=\left(\mathrm{a}_{\mathrm{i}, \mathrm{j}}\right) \geq 0$ is irreducible then either $\sum_{\mathrm{j}=1}^{n} \mathrm{a}_{\mathrm{i}, \mathrm{j}}=\rho(\mathrm{A})$ or

$$
\begin{equation*}
\min _{1 \leq \mathrm{i} \leq \mathrm{n}}\left(\sum_{\mathrm{j}=1}^{\mathrm{n}} a_{i, j}\right)<\rho(\mathrm{A})<\max _{1 \leq \mathrm{i} \leq \mathrm{n}}\left(\sum_{\mathrm{j}=1}^{\mathrm{n}} a_{i, j}\right) \tag{1}
\end{equation*}
$$

Proof: Case(1): All row sums of A are equal ($=\sigma$): Let $\zeta=[1,1, \cdots, 1]$. Clearly, $\mathrm{A} \zeta=\sigma \zeta$ and $\sigma \leq \rho(\mathrm{A})$.
However, the Gerchgorin's Theorem implies $\rho(\mathrm{A}) \leq \sigma$. Hence, $\rho(\mathrm{A})=\sigma$.
Case(2): Not all row sums of A are equal:
Construct $\mathrm{B}=\left(b_{\mathrm{i} j}\right) \geq 0$ and $\mathrm{C}=\left(c_{\mathrm{ij}}\right) \geq 0$, by decreasing and increasing some entries of A , respectively, such that

$$
\sum_{\mathrm{j}=1}^{\mathrm{n}} b_{\ell, j}=\alpha=\min _{1 \leq \leq \leq \mathrm{n}}\left(\sum_{\mathrm{j}=1}^{\mathrm{n}} a_{i, j}\right) \text { and } \sum_{\mathrm{j}=1}^{\mathrm{n}} c_{\ell, j}=\beta=\max _{1 \leq \leq \leq \mathrm{n}}\left(\sum_{\mathrm{j}=1}^{\mathrm{n}} a_{i, j}\right) \text {, for all } 1 \leq \ell \leq n \text {. }
$$

By Perron-Frobenius theorem, we have $\rho(\mathrm{B}) \leq \rho(\mathrm{A}) \leq \rho(\mathrm{C})$.
Clearly, from the result of Case(1), the inequality (1) holds.

Theorem 1. Let $\mathrm{A}=\left(\mathrm{a}_{\mathrm{i}, \mathrm{j}}\right)$ be a strictly or irreducibly diagonally dominant matrix then the Jacobi and Gauss-Seidel iterative methods converge.

Proof: Recall that $\mathrm{E}_{\mathrm{J}}=\mathrm{I}-\mathrm{D}^{-1} A=\mathrm{D}^{-1}(L+U)=\left(b_{i, j}\right)$, where $\mathrm{b}_{\mathrm{i}, \mathrm{j}}=\left\{\begin{array}{cc}0 & i=j \\ \frac{-a_{i, j}}{a_{i, i}} & i \neq j\end{array}\right.$. From Lemma 2, it is clear that $\rho(\mathrm{B}) \leq \rho(|B|)$. Since A is strictly diagonally dominant, clearly, we have $\sum_{\mathrm{j}=1}^{\mathrm{n}}\left|b_{i, j}\right|<1$ for all $1 \leq \mathrm{i} \leq \mathrm{n}$. Therefore, Lemma 1 implies $\rho(|B|)<1$. As a result, we have shown the Jacobi iterative method converge from $\rho(\mathrm{B}) \leq \rho(|B|)<1$.

Together with Theorem at p.35, this shows a strictly (or irreducibly) diagonally dominant matrix is an M-matrix.

Theorem 2. Let $\mathrm{A}=\mathrm{D}-\mathrm{E}-\mathrm{E}^{*}$ and D be Hermitian matrices, where D is positive definite, and $\mathrm{D}-\omega \mathrm{E}$ is non-singular for $0 \leq \omega \leq 2$.

$$
\text { Let } \mathrm{E}_{\mathrm{SOR}}=I-\omega(D-\omega E)^{-1} \mathrm{~A} \text {. Then } \rho\left(E_{\mathrm{SOR}}\right)<1 \text { if only if } \mathrm{A} \text { is }
$$ positive definite and $0<\omega<2$.

Proof: First, assume e_{0} is a nonzero vector, the SOR iteration can be written as

$$
\begin{equation*}
(D-\omega E) \mathrm{e}_{\mathrm{m}+1}=\left(\omega E^{*}+(1-\omega) D\right) \mathrm{e}_{\mathrm{m}}, \mathrm{~m} \geq 0 \tag{2}
\end{equation*}
$$

Let $\delta_{m}=\mathrm{e}_{\mathrm{m}}-\mathrm{e}_{\mathrm{m}+1}$. Substracting $(D-\omega E) \mathrm{e}_{\mathrm{m}}$ and $\left(\omega E^{*}+(1-\omega) D\right) \mathrm{e}_{\mathrm{m}+1}$ from both side of (2), we have $(D-\omega E) \delta_{m}=\omega A \mathrm{e}_{\mathrm{m}}---$ (3) and $\omega A \mathrm{e}_{\mathrm{m}+1}=\left[(1-\omega) D+\omega E^{*}\right] \delta_{m}----$ (4).
From $\mathrm{e}_{\mathrm{m}}^{*} \times(3)-\mathrm{e}_{\mathrm{m}+1}^{*} \times(4)$ and "simplifying the expression" (HW), one has

$$
\begin{equation*}
(2-\omega) \delta_{\mathrm{m}}^{*} \mathrm{D} \delta_{m}=\omega\left\{\mathrm{e}_{\mathrm{m}}^{*} A \mathrm{e}_{\mathrm{m}}-\mathrm{e}_{\mathrm{m}+1}^{*} A \mathrm{e}_{\mathrm{m}+1}\right\} \tag{5}
\end{equation*}
$$

Assume A is positive definite and $0<\omega<2$ and let e_{0} be any eigenvector of $\mathrm{E}_{\text {sor }}$. We have $\mathrm{e}_{1}=\lambda \mathrm{e}_{0}$ and $\delta_{0}=(1-\lambda) \mathrm{e}_{0}$ and (5) reduces to

$$
\left(\frac{2-\omega}{\omega}\right) 11-\left.\lambda\right|^{2} \mathrm{e}_{0}^{*} D \mathrm{e}_{0}=\left(1-|\lambda|^{2}\right) \mathrm{e}_{0}^{*} \mathrm{~A} \mathrm{e}_{0}--\cdots--(6)
$$

Now, $\lambda \neq 1$. Otherwise, $\delta_{0}=0 \Rightarrow A \mathrm{e}_{0}=0$ (by (3)) $\Rightarrow \mathrm{e}_{0}=0 \Rightarrow$ contradiction!
Since A and D are positive definite and $0<\omega<2,(6)$ implies $1-|\lambda|^{2}>0$. Therefore, $\rho\left(E_{\text {SoR }}\right)<1$.
Using similar arguments, one can show that the converse is also true.
Exercise: Together with Theorem at p.35, shows positive definite Hermitian matrices $\left[a_{i j}\right]$ with $a_{i j} \leq 0, i \neq j$, are M-matrices.

